granville.R
davej — Jan 3, 2015, 7:38 PM
#Granville regression
library(huge)
Loading required package: Matrix
Loading required package: lattice
Loading required package: igraph
Loading required package: MASS
library(MASS)
library(ggplot2)
create.test.data.random= function(){
#normally distributed data with non-trivial correlation structure
dimension = 50
num.observations = 10000
prob.correlated = 0.2
L = huge.generator(n=num.observations,d=dimension,graph="random",prob=prob.correlated,v=5.0)
plot(L)
par(mfrow=c(1,1))
df=data.frame(L$data)
#normalize
df=scale(df)
df=data.frame(df)
return(df)
}
granville.coeffs.raw = function(df){
cov.matrix=cov(df)
coeffs=c()
n=ncol(df)
for (i in 1:n) {
coeffs[i]=cov.matrix[1,i]/cov.matrix[i,i]
}
coeffs=coeffs[2:n]
return(coeffs)
}
lm.coeffs=function(df){
n=ncol(df)
linear.model=lm(X1~.,data=df)
coeffs=linear.model$coefficients
#ignore the intercept
coeffs=coeffs[2:n]
return(coeffs)
}
ridge.coeffs=function(df,lambda=0.1){
n=ncol(df)
ridge.model=lm.ridge(X1~.,data=df,lambda=lambda)
coeffs=ridge.model$coef
#ignore the intercept
coeffs=coeffs[2:n-1]
return(coeffs)
}
test.granville = function(){
df=create.test.data.random()
truth=lm.coeffs(df)
granville.raw = granville.coeffs.raw(df)
ridge.coeff=ridge.coeffs(df)
par(mfrow=c(1,2))
plot(truth,granville.raw,xlab='True Coefficients')
title('Granville')
plot(truth,ridge.coeff,xlab='True Coefficients')
title('Ridge')
}
No comments:
Post a Comment